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Effect of particle size on the sintering of 
Li20-AI2Oa-4SiO2-borosilicate glass composites 
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The effect of spodumene particle-size on the sintering of spodumene-borosilicate glass 
composites was investigated. The results can be explained by a particle-size dependence of 
the extent of reaction between spodumene and glass. For samples fabricated with fine 
spodumene particles (1.5-3 #m), a reactive liquid-phase sintering behaviour was observed. 
Smaller particle size resulted in a higher sintered density and coarser microstructure. For 
samples fabricated with coarse spodumene particles (3-7 pm), a non-reactive liquid-phase 
sintering behaviour was observed when a high-viscosity glass, a lower initial glass content, 
and a lower sintering temperature were used. A larger particle size resulted in a higher 
sintered density and coarser microstructure. If a low sintering temperature or a coarse (e.g., 
7 pm) particle size were used, the dissolution of the glass into spodumene was reduced 
which resulted in an increased amount of glass crystallization. 

1. Introduction 
Several new systems that consist of a glass added 
to a crystalline ceramic have been recently deve- 
loped [1-5] to replace conventional alumina as a sub- 
strate for high-performance large scale integrated 
(LSI) packaging [6]. To fulfill the high speed signal- 
propagation requirement, the substrate material 
should have a low dielectric constant, a thermal 
expansion coefficient near that of Si (3.0 x 10 - 6  K -  1), 

and a low sintering temperature ( < 1000 ~ to enable 
co-firing with low-resistance metals such as copper, 
silver, or gold. Vitreous silica and some borosilicate 
glasses have often been used as the glass phase 
because of their low dielectric constant (<4 ) .  
In addition borosilicate glasses, have especially, 
low softening points and thus enable sintering. The 
ceramic phase in these glass + ceramic composites 
acts mainly as a fillter that inhibits curling when the 
glass is soft. The ceramic phases which have the 
potential to meet substrate requirements are a-co> 
dierite (2MgO-2A1203-5SiO2), [3-spodumene 
(Li20-A1203-4SiO2), celsian (BaO~t203-2SiO2), 
mullite (3A1203-2SIO2), alumina, and a-quartz [6]. 
The formation and properties of composites consist- 
ing of borosilicate glass added to <*-cordierite [1-4], 
alumina [1,2,5], mullite [1], and s-quartz [2] have 
been reported. However, few investigations on the 
spodumene-borosilicate glass composites have been 
performed. It is known that particle size has a signifi- 
cant influence on the formation of a ceramic + glass 
composite. Therefore, the intention of this study is to 
investigate the effect of spodumene particle size on the 
sintering, crystallization of the glass additive, and 
microstructure of spodumene-borosilicate glass com- 
posites. 
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2. Experimental Procedure 
2.1. Sample preparation 
Three glasses based on B203-SIO2 compositions were 
prepared before adding to the stoichiometric 13- 
spodumene composition (LizO-A1203-4SiO2). The 
compositions of the glasses, denoted by B, C, and D, 
are listed in Table I. The sequence of glass viscosity is 
B < C < D, according to the modifier (Na20 and 
CaO) content. The glasses were prepared by mixing 
powders containing appropriate amounts of reagent- 
grade SiOz, B203, NazCO3, and CaCO3, melting in 
a platinum crucible and then quenching into de- 
ionized water to form glass frits. The dried frits were 
crushed in an alumina-lined mortar grinder (Model 
RMO, F. Kurt Retsch GmbH & Co. KG, Germany) 
until the powder passed through 80 mesh. The crushed 
glass powders were then milled for about 20 h in 
alumina-lined mills containing alumina balls and 
ethanol until an average particle size of about 3 btm 
was obtained (measured with a particle-size analyser, 
Model MSE02SM, Malvern Instruments Ltd., Wor- 
cestershire, UK). 

The 15-spodumene ceramic powder was prepared by 
a standard ceramic procedure. Well-mixed powder 

TABLE I Glass compositions studied 

Composition (wt %) 

Glass BzO3 SiO2 NazO CaO 

B 15 65 10 10 

C 20 70 5 5 

D 25 70 2.5 2.5 

5603 



containing appropriate amounts of reagent-grade 100 
LiaCO3, A120 3, and SiO2 was calcined at 1300~ 
for 10 h. Then, the powder was ground by hand 
and recalcined at 1350~ for 4h.  The X-ray dif- _ 90 
fraction pattern of the resultant powder was charac- 
teristic of a pure f3-spodumene phase. The powder was .~ 

t -  then milled for appropriate periods in alumina-lined , 
"Z2 

mills containing alumina balls and ethanol until aver- 
> 

age particle sizes of 1.5, 3, and 7 ~m were obtained. ',~ 
Spodumene-glass composite powder mixtures were ~: 

prepared by mixing the above J3-spodumene and glass 
powders in ethanol for 4 h, using Teflon balls. The 
slurry was mixed with polyvinyl alcohol as a binder, 
dried, and screened ( < 80 mesh). The green compacts 
were uniaxially pressed at 70 MPa in a 10 mm dia- 
meter steel die lubricated with a thin layer of stearic 
acid. The green densities were about 50% of theoret- 
ical densities. The green compacts were prefired at 
a heating rate of 2 ~ K per min to 500 ~ and held for 
1 h. The samples were then sintered in air at 

v 

700-1000~ for 2h,  at a heating rate of 10~ .# 
per mira, and furnace cooled. The samples containing =~~ 
glass B, glass C and glass D are denoted as L x B, "~ 

1# 

L x C and L x D, respectively, where x is the glass .-> 
fraction (wt%). -~ 

IX: 

2.2. Characterization 
The densities of the sintered bodies were measured by 
the Archimedes method. The theoretical densities of 
the sintered bodies were calculated, using a mixing 
rule, using densities of 2 .45gem -3 for glass B, 
2.41 gem -3 for glasses C and D, and 2.375 gem -3 for 
J3-spodumene. Phase identification was conducted by 
X-ray diffraction (XRD) analysis using polished sam- 
ples. Measurements were performed on a diffracto- 
meter (Model D5000, Siemens, Germany) with CuK= 
radiation and a Ni filter. The operating power was 
40 kV and the current was 15 mA. Continuous scann- 
ing was used with a scan speed of 2 ~ per min and 
a sampling interval of 0.01 ~ (20). The sintered bodies 
were polished, etched (1 wt % HF, 10-30 s, 25 ~ and 
then coated with a thin film of gold for scanning 
electron microscopy (SEM) observations. 

3. Results and discussion 
3.1. S in te r i ng  
Fig. l(a--c) shows the variation of relative density of 
the sintered samples with sintering temperature. Rela- 
tive densities higher than 90% could be obtained for 
appropriate sintering temperatures. It can be seen that 
several curves show density reduction at higher sinter- 
ing temperatures. This trend becomes less significant 
as a high-viscosity glass (i.e., glasses C and D) is used. 
It has been shown that this density reduction can be 
attributed to coalescence of the neighbouring closed 
pores and/or closed pore expansion as a result of 
pressure developed by the expansion of the gases trap- 
ped in the pores [7]. It was found that in this higher 
temperature range in which density reduction occur- 
red, no clear relationship between density and particle 
size could be obtained. However, in the lower temper- 
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Figure 1 Relative density of composites containing (a) glass B ( - ) 
in sample L50B (b) glass C in samples; ( - ) L60C and (---) L50C 
and (c) glass D, in samples; ( - ) L60D and (- - -) Lh0D. 

ature range in which density reduction did not appear, 
the effect of the spodumene particle-size can be 
divided into two categories: 
i) 1.5-3 gm: for all compositions, the density for the 
1.5 gm sample is higher than that for the 3 tam sample. 
Namely, fine spodumene powder increases the sin- 
tered density. 
ii) 3-7 gm: for L50B and L60C, the density for a 3 gm 
sample is higher than that for a 7 gm sample. This is 
also true for L50C, L50D, and the L60D samples 
sintered at higher temperatures. However, for L50C, 
L50D, and L60D samples sintered at lower temper- 
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atures the density for the 3 ~m sample is lower than 
that for the 7 gm sample. In other words, coarse 
spodumene powder tended to improve sintering as 
a high-viscosity glass (i.e., glass C and, especially, glass 
D), lower initial glass content (cf., L50C and L60C), 
and a lower sintering temperature were used. 

Since a liquid phase would form (from the glass 
phase) during sintering of the glass + ceramic com- 
posites, either liquid-phase sintering or a non-reactive 
liquid-phase sintering mechanism should be con- 
sidered. It is known that a liquid-phase sintering 
mechanism can be divided into rearrangement, solu- 
tion-precipitation, and coalescence processes [8], in 
which dissolution of the solid particles into the liquid 
phase is important. Moreover, densification can be 
improved by using a smaller particle-size. For samples 
fabricated with fine spodumene particles (1.5-3 gm, 
category i), the higher specific area increased the de- 
gree of reaction between spodumene and glass, thus 
a liquid-phase sintering behaviour was observed. 
Therefore, the sintered density increased with the de- 
creasing spodumene particle-size. A non-reactive 
liquid phase-sintering mechanism for the sintering of 
borosilicate glass + alumina composites has been pro- 
posed by Ewsuk and Harrison [9]. It is assumed that 
the liquid phase does not react with the ceramic par- 
ticles to create additional liquid to aid densification. 
Glass redistribution, grain rearrangement, and vis- 
cous flow are considered as the three stages. They 
found that higher composite densities are achieved 
more quickly when a coarse rather than a fine particle 
size alumina filler was used. For samples fabricated 
with coarse spodumene particles (3-7 gm, category ii) 
in this study, the lower specific area decreased the 
degree of reaction between spodumene and glass and 
thus a non-reactive liquid-phase sintering mechanism 
is also possible. This is particularly true as the degree 
of reaction between spodumene and glass can be de- 
creased (i.e., when high-viscosity glass, a lower initial 
glass content, and a lower sintering temperature were 
used). 

Figure 2 Microstructure of the L60D sample made with 1.5 gm 
spodumene particle-size to illustrate the typical pore morphology. 
The sintering temperature was 900 ~ 

3.2. Microstructure 
Fig. 2 shows a typical micrograph to illustrate the 
pore morphology observed in the present study. Pores 
with a round shape were seen. Fig. 3(a-c) shows the 
enlarged microstructure for the L50C composition 
sintered at 900 ~ to illustrate the typical morphology 
of spodumene particles. It can be seen that the 
spodumene particles have an angular shape with 
smooth, straight sides. This indicates that a solu- 
tion-precipitation process occurred. Particles of ~- 
quartz can also be seen in the 7 gm sample. Moreover, 
it can be seen that the average size of spodumene 
particles in the 7 gm sample is larger than that in the 
3 gm-sample. However, the average size in the 3 gm 
sample is smaller than that in the 1.5 gm sample. Since 
fine spodumene powder would result in a higher de- 
gree of reaction between spodumene and glass, an 
accelerated coarsening rate for spodumene particles 
would be expected. Therefore, the largest final particle 
size of the 7 gm sample should be caused by the largest 

Figure 3 Microstructures of the L50D samples made with an (a) 1.5, 
(b) 3, and (c) 7 gm spodumene particle-size and sintered at 900 ~ 
(S: [3-spodumene, G: glass, Q: a-quartz) 
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initial particle size and/or the smallest degree of reac- 
tion between spodumene and glass. On the other 
hand, the smallest initial particle-size of the 1.5 gm 
sample resulted in more significant coarsening of 
spodumene particles than that in the 3 gm-sample, 
thus a larger final size for the 1.5 lam sample than that 
for the 3 gm sample was obtained. The other composi- 
tions also showed a similar trend. 

3.3. X-ray diffraction 
It was found that the sintered samples showed crystal- 
lization of glass: anorthite (CaO-A1203-2SiO2) and 
a-quartz for L50B, a-quartz for L50C and L60C, and 
a-quartz and cristobalite for Lh0D and L60D. The 
formation of anorthite in composition Lh0B is pro- 
bably caused by the dissolution of A13 § ions from 
spodumene into glass B, which contained a higher 
calcium concentration. It was found for all composi- 
tions that the total crystallized amount decreased with 
increasing sintering temperature. The typical XRD 
patterns are shown in Fig. 4 for composition Lh0C 
sintered at 800-950~ It can also be seen that, al- 
though the crystallized amount decreased with in- 
creasing sintering temperature, the broad scattering 
intensity associated with a glass phase was not 
obviously increased and was lower than that for the 
unfired sample. This indicates that there were remark- 
able reactions between glass and spodumene, i.e., the 
glass can partially dissolve into spodumene. As the 
sintering temperature was increased, the increased de- 
gree of glass dissolution resulted in a decreased 
amount of crystallization. The typical effect of particle 
size on the glass crystallization is shown in Fig. 5 for 
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Figure 4 Effect of sintering temperature on the XRD pattern of the 
Lh0C sample. The starting spodumene particle-size is 3 gin. (S: 
[3-spodumene, Q: ~-quartz, 1: unknown). 
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Figure 5 Effect of spodumene particle-size on the XRD pattern of 
the Lh0C sample sintered at 900 ~ (S: [3-spodumene, Q: e~-quartz). 

the Lh0C composition. It can be seen that the 7 gm 
sample showed higher crystallized concentrations 
than did the 1.5 and 3 gm samples which agrees with 
the SEM observations (Fig. 3c). Due to the reduced 
total contact area between spodumene and glass par- 
ticles in the 7 gm sample, the amount of glass dissolu- 
tion into spodumene decreased and thus the amount 
of residual glass increased, resulting in a higher cry- 
stallized amount. Other compositions also showed 
a similar trend. 

4. C o n c l u s i o n s  
The effect of spodumene particle-size on the sinterlng, 
glass crystallization, and microstructure of spo- 
umene-borosilicate glass composites were in- 
vestigated. Densities > 90% could be obtained for 
samples sintered at appropriate temperatures. For 
samples fabricated with fine spodumene particles 
(1.5-3 gm), a reactive liquid phase sintering behaviour 
was observed. A smaller particle size resulted in higher 
sintered density and a coarse micorstructure. For sam- 
ples fabricated with coarse spodumene particles 
(3-7 gm), a non-reactive liquid-phase sintering beha- 
viour was observed as a high-viscosity glass, a lower 
initial glass content, and a lower sintering temperature 
were used. Larger particle sizes resulted in a higher 
sintered density and coarser microstructure. The 
above results can be explained by the particle-size 
dependence of the extent of reaction between 
spodumene and glass. Moreover, if a low sintering 
temperature or a coarse (e.g., 7 lam) particle size were 
used, the dissolution of the glass into the spodumene 
was reduced which resulted in an increased amount of 
glass crystallization. 
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